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Abstract. We consider the two-impurity Kondo problem, in a basis in which the elemon states 
are wriuen in terms of their parity with res@ to the midpoint between impurities. We consider 
the scattering of electrons by the spin-one complexes formed by lhe impurities, making use of 
the fact that the RKKY interaction is diagonal in this basis and acts in much the same way that 
a cryslal k l d  acts in the degenerate Kondo problem. By expanding the equatiors of motion 
to leading logarithmic order we show that the resulting Kondo temperature is reduced by an 
inneasing antifemmagnetic RKKY interaction, and for one of the elexwon parity channels crosses 
the antiferromagnetic RKKY singlet This happens when the RKKY interaction is of the order of 
the bare (no RKKY) Kondo temperature. We interpret this crossing as reflecting the divergence of 
Fermi liquid properties found in numerical studies along the lines of a phenomenologicd model 
introduced by two of lhe authors. 

1. Introduction 

Despite much progress in the last thirty years the problem of the competition between 
localized magnetic order and itinerant behaviour continues to confound theoretical and 
experimental investigators. Although the properties of single-impurity systems are by now 
understood, the simplest extension, namely the problem with two magnetic impun’ties that 
scatter sumounding conduction electrons, has generally been beyond the reach of the kind 
of techniques that resolved the single-impurity problem. Recent theoretical progress has, 
however, revealed a rich behaviour in the region where the tension between localized and 
itinerant behaviour is strongest, namely where the antiferromagnetic RKKY and Kondo energy 
scales are of the same order of magnitude. 

As according to recent numerical renormalization group (RG) studies [I] and conformal 
invariance approaches [2] there exists an unstable fixed point separating the stable Kondo 
and antiferromagnetic fixed points. In the neighbourhood of this fixed point the Fermi liquid 
parameters that characterize the low-temperature behaviour show a divergence as the RKKY 
interaction ( I )  approaches roughly twice the Kondo temperature (TK). The divergence (as 
a function of I - 2TK) shows up in the linear specific heat coefficient and the staggered 
susceptibility but not in the uniform susceptibility 111. Fulthermore, the expectation value 
(SlSz) is approximately -1/4 at this fixed point. While these results are of interest in their 
own right, the problem arises as to whether this behaviour can be understood from any 
more conventional viewpoints. This issue is particularly important for lattice problems and 
concenfrated alloys as well as for spin glass systems in which the itinerant electron effects 
play a role. 
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After the original numerical RG study, a simple model was proposed by two of the 
authors [3] that reproduced a number of features of the exact study. The model consisted of 
four spins, two of which represented the impurities, and two of which represented the on-site 
conduction electron spin densities. The on-site coupling between the elechon and impurity 
was taken to be the single-ion Kondo temperature, so that the appropriate singlet-triplet 
splitting was obtained in the spirit of the phenomenology of Nozieres [4]. By including 
intersite couplings, this model was found to display a crossover between antiferromagnetic 
singlet and Kondo ground states as the couplings were varied The crossover occurred at a 
value of the RKKY interaction equal to twice the Kondo temperature. At this point it  was 
also found that the Kondo and antiferromagnetic singlets were degenerate with a third state, 
namely an odd-parity triplet. 

As a consequence of the above degeneracies, operators that mix the odd-parity triplet to 
the singlets, such as the staggered susceptibility, would naturally diverge at such a point. On 
the other hand, mixing to the higher-lying even-parity triplet would not cause a divergence. 
Nevertheless, as a result of the degeneracy of the hvo singlets the specific heat would diverge. 
The fact that this simple model recovers the broad qualitative features of the exact solution 
has spurred attempts to place this phenomenological model within a more rigorous many- 
body framework. Starting from the Anderson model, Saso [5] observed that by transforming 
the electron states into ones with even and odd parity with respect to the impurity centre 
of gravity, the model had formal similarities with the f'-6 Anderson model. Applying a 
variational calculation to this problem, in which the Kondo and antiferromagnetic singlets 
could be explicitly examined, he investigated the crossover between the two ground states. 

A similar calculation was performed by Yanasigawa [6], albeit for different coupling 
schemes, which allowed him to compare with numerical diagonalizations on small systems. 
It emerged from these variational and numerical calculations that the divergences in the 
response functions for the Kondo model were smeared out. The same behaviour was found 
by Sakai et a/ [7] in a numerical RG study of the two-impurity Anderson model. These 
authors tried a number ofcoupling schemes, in order to understand the discrepancies between 
the Kondo RG studies and Monte Carlo studies [8] of the two-impurity problem. They found 
a sensitive dependence on the coupling scheme, with the least amount of smearing for the 
Jones et nl [ I ]  choice of coupling (which in their more recent studies [7] has indeed turned 
into a divergence). They also found an asymmetry in the spectral densities of the even- and 
odd-parity channels if anything other than the parity- and energy-independent hybridization 
was used. 

The qualitative differences between Kondo and Anderson model behaviour can be 
attributed in part at least to the existence of potential scattering in the latter but not in 
the former. Jones and Varma [9] carried out a numerical RG study incorporating potential 
scattering and indeed found a broadening of the divergence at I = ~ T K .  Within a slave- 
boson mean-field theory this broadening was related to scattering phase shifts, which take 
quantized values at the fixed points when there is particle-hole symmetry [IO, 1 I] .  

In this paper we attempt to study the problem without potential scattering from the 
conventional perturbation viewpoint. We will not try to obtain the exact ground state of the 
two-impurity problem; rather we seek to understand the effects of the Kondo spin dynamics, 
by examining the energy scale characterizing the breakdown of high-energy perturbation 
theory and the transition to the Fermi liquid regime. The validity of our results is therefore 
restricted to the perturbative regime. 

As in the above-mentioned variational studies we shall work within the even- and odd- 
parity state scheme in which the RKKY interaction is diagonal and acts as a crystal field 
splitting does in the normal single-impurity Kondo problem. By separating the impurity 



Perturbation theory for the Kondo problem 4037 

states into the singlet and triplet states and rewriting the Kondo scattering terms in terms 
of scatterings of conduction electron states from these impurity states, we can apply the 
normal techniques of second-order perturbation theory in the Kondo coupling strength. We 
shall adopt the equation of motion approach since for the singlet and triplet representation 
it is the most straightforward. Applying this method in the vertices for scattering of even- 
and odd-parity electron states within and between the triplet and singlet impurity states we 
shall obtain the effective Kondo temperature at which perturbation theory breaks down. 

For zero RKKY 
splitting we expect the Kondo temperature to be that of the isolated impurities. As the 
splitting is switched on the Kondo temperature changes, reflecting the influence of magnetic 
interactions on the Kondo effect. The singlet state is pulled out from underneath the triplet 
and under the right conditions one might expect to see the level crossing (of the type 
mentioned above) result if the splitting is large enough. A closing of the gap between the 
antiferromagnetic singlet and Kondo binding energy might then reflect an increase of the 
Fermi liquid parameters characterizing the low-temperature behaviour. 

A schematic description of the problem is indicated in figure 1. 

t 

Figure 1. Schematic illustration of lhe psition of Ihe Kondo singlet relative to the S = 1 
mmplex formed by the two impurities before and after the intmduction of an RKUY splitting. 

In the following section we formulate the problem in terms of even- and odd-parity 
electron states and derive the equations of motion for the vertices. After some elimination 
we are able to reduce these equations of motion to a form suitable for numerical treatment. 
We shall trace the behaviour of the effective Kondo temperature, starting from its known 
zero RKKY value, as the RKKY interaction is increased 

2. Formulation 

Our starting point is the conventional two impurity Kondo model 

H = 6kC&km + J [ei~k-k~'RISI -t ei 'k-k~'R2~~] e: 0 ack In, (1) 
ko k.ki ,sm 

where Cko labels the electron states with wavevector k and spin a, SI and Sz label the two 
impurity spins at positions RI  and Rz respectively. By integrating out the angles around the 
line joining the two impurities we can rewrite the electron states as a 1D problem, namely 
in terms of forward (aqn) and backward (bqc) states. Relabelling the backward states so 
that they have the same energy as the forward states, replacing the wavevectors in the 
exponentials by their values at the Fermi surface, and defining the even- and odd-parity 
electron states by the relation 

= (at, + pb:,)/./2 (2) 
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we can write the resulting two-impurity Hamiltonian in the form 

H=C ~kCk.p,nCk.p .o  + + J(sl + sz) x C t p , , , O C k ~ . p . n ( l  + P d k F R ) )  
k . p . 0  k,!+ 

(3) 

where R = IRI - Rzl denotes the impurity separation. It remains to transform the impurity 
spin operators into a basis where the RKKY is diagonal. To this end we define the singlet 
and triplet states as follows: 

+ f isin(kFR)J(& - SZ) [Cl - , ,ck i .+ .o  -ck,+,~cki.- .L71 
k .k i .p  

S+ =[I+-) - I  -+)I/& 

to' = [I + -) + I -+)I/& 
f? = I - -) 

I+' = I + +). 

In terms of the above states the interaction part of the Hamiltonian reads 

(4) 

+ (~/2)(tO+r+ + t_+to) c ~ p . + c k ! . p . - ( I  + PCWFR)) 
k.lt1.p 

+ i sin(k&(Jl&(t?s + S+r+) ~ ( $ - . + c k t . + . -  - ck,+.+ck,.-.-). + (5) 
k.kt 

It should be noted that it is the order of the singlet and triplet operators that is relevant-they 
are projection operators and the notation is not supposed to imply any particular commutation 
relations. In terms of these operators the RKKY interaction becomes 

(6) 
where Es - ET = I ,  the unrenormalized RKKY interaction. It remains to define the vertices 
for scattering of the conduction electrons from these. impurity states. They are as follows. 

HRKKY = &s+s + .%[r++t+ + to'ro + t-t-1 + 

rs .r  c(ck.- .+to's; C$.+,+)io, r f - /o  = c ( c k . + , - f i t -  + . +  ck,,+,+)lW# 

k k 



Perturbation theory for the Kondo problem 4039 - - - 

We have chosen electron states of even parity as the final states-we will return to the 
odd-panty states later. For the moment all that matters is that these are the vertices that 
arise when we calculate the equations of motion of the even-parity single-particle Green 
function i.e. 

We then proceed to evaluate the equations of motion for the above Green functions in the 
standard manner, decoupling the expressions resulting on the right-hand side in complete 
analogy to the Nagaoka approximation [12] used originally for the single-site Kondo 
problem. We illustrate the procedure on the vertex rlo,, 

([ck.-,+tos, ck,,+,+) + = -(J;/2nk) x(ckz, - , - t?s;  et,+.+) 
h 

where we have replaced products of electron operators by average occupation numbers as, 
for example, 

and terms such as 

We have introduced the shorthand 

and the occupation number nk = ( C ~ ~ , ~ C ~ , ~ , ~ )  = 1 - f ( k )  where f ( k )  denotes the Fermi 
function. In addition to the above terms other terms are produced on the RHS, but these 
involve combinations of the one-electron Green function and frequency integrations over the 
vertices in (7). As such, they provide non-logarithmic corrections that would only matter 
if we were to attempt a full solution of the problem. Since we know from experience 
with the Kondo problem that the Nagaoka approximation is only adequate as far as the 
leading logarithmic divergences, we ignore these terms. Only the terms listed above relate 
to logarithmic coefficients of the vertices listed in equation (7). and in order to obtain the 
Kondo energy scale for our problem only these terms are necessary. 



N(iw.)= Cnk/ ( io .  - t k  + ES - ET) = In[(-io. + ES - &)/o]. (16) 
X 

For zero RKKY interaction, we can form the linear combinations 

rl = rmr + rslo + rSl+ + rLs (17) 

rz = rrd+ + r4[+ + rLL + r,..,& (18) 

which satisfy the much simpler equations 

i-1 -J;Nri -iJ-Nra (19) 

I'2 = - J2Nr2 + iJ- N r ,  (20) 

which at zero temperature have the solution o = D e x p ( - i p J )  = T i ,  namely the expected 
Kondo temperature for a system of two non-interacting Kondo impurities. Such a set of 
equations could also have been obtained starting from the original representation of the 
model and examining the quantities 

(21) 

(22) 

r l  = ((ck.+.+(si +'%I f ck,.+.-(s; + sg)); CL+.+). 

r2 = ((ct.-.+(s; -si) + ck ,-,- (s; - s;); cx,+,+)2 
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which, not surprisingly, is what the linear combinations (19) and (20) reduce to in the limit 
of zero splitting. This supports our need to support the RKKY interaction as a kind of crystal 
field splitting since non-Kondo RKKY terms are generated at higher order than i s  consistent 
with the present level of decoupling. 

As regards the odd-parity electron states it is straightforward to derive a set of equations 
corresponding to (13). for vertices that are related to the odd-parity single-electron Green 
function. As is clear from the Hamiltonian, these equations yield a matrix identical to that 
in (13). except for the replacements J+' cf J; and J- cf - J - .  Hermiticity ensures that 
the latter replacement is of no consequence. 

Returning to the full set of equations (13) we find that they can readily be reduced 
to an involved pair of equations relating to the vertices rlOl+ and rl-lo. which has to be 
treated numerically. It is still straightfonvard to follow the evolution of the Kondo pole 
OJ = Ti as the splitting is varied. As a check, we obtain the same results using the algebraic 
manipulation program REDUCE directly on the set of equations in (13). In fact we find that 
the evolution of the Kondo pole is obtained from the vanishing of a single factor of the 
determinant of (13). For the even-parity states the effective Kondo temperature is given for 
general RKKY splitting by the solution of 

- 2 J ; J 1 2 L 2 ( M  + N )  -4J;J;'LMN = O  (23) 

while for the odd-parity states the above-mentioned interchanging of JT and J+' has to be 
made. 

Turning to the solution of (23) we note that the determinant is invariant underachange of 
sign of the RKKY splitting. This would appear to imply that the physics is the same whether 
the RKKY interaction is ferromagnetic or antiferromagnetic. In fact for the former case it is 
known that the present method cannot give reliable information even on the energy scale 
that controls the low-temperature behaviour. This is on account of the two-stage Kondo 
effect that occurs in this case. As shown by Jayaprakash et al [13], the S = 1 triplet is 
partially compensated by one of the parity channels and the residual spin is taken care of at 
a lower temperature, which itself represents the final scale characterizing the Fermi liquid 
ground state. However, the present method can predict the temperature scale on which the 
S = 1 complex is partially compensated, namely 

(24) 

In deriving this expression we have taken the RKKY splitting to be much larger than the 
Kondo temperature. If we retain only the In@- I )  terms and drop all the other logarithmic 
factors we obtain the exponential factor multiplied by the bandwidth. This exponential part 
is consistent with the results of Jayaprakash et QI [13]. Keeping the remaining logarithms 
in (23) leads to the appearance of the prefactor in (24). 

Turning now to the case of antiferromagnetic coupling we adopt the attitude that only 
one energy scale characterizes the Kondo compensation of each parity channel, and we 
study the dependence of the zeros of (23), representing as they do, the effective Kondo 
temperatures in each parity channel, as a function of the RKKY interaction I .  In figures 2 ( a )  
and (6) we plot the effective panty channel Kondo temperatures versus I for various values 
of the parameter cos(kpR). If the cosine changes sign, even and odd parity are interchanged, 
so for convenience we shall restrict our attention to positive cosines. We find in all cases the 
expected asymmetry between even- and odd-parity channels with a separation between Ti f f  

Cff - ~ ( ~ ~ ~ ) 3 l ~ + E O I l k ~ R l I / Z I I - M s l k ~ R I I  expi- J - ]  TK - + '  
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Figure 2. Variation of the effective Kondo temperature m = Tiff with RKKY splitting I (both 
normalized 10 the Kondo temperawe in the absence of the RKKY interaction, Ti) for (a), even- 
parity and (b)  odd-parity states. In the former, (U),  the values of the parameter cos(kpR) are: 
for the dashed line, 0.1; for the short-dasheddotted line, 0.3: and for the longdashed-dolled 
line, 0.5. For the latter. namely ( b )  the odd-parity states. the values of COS(~FR) are: for Ihe 
full line. 0.5; for the shondashed-dofted line, 0.3; for lhe longdashed-dolled line, 0.7; for lhe 
long-dashed line, 0.1; and for the shon-dashed line, 0.9. In both figures the m = I limit is also 
shown. 

and 1 decreasing as 1 is increased. In one channel, for positive cos(kpR), the even-parity 
channel, this separation is always finite. 

On the other hand we find that for the odd-parity channel the effective Kondo 
temperature crosses the UJ = 1 line at a value I = lo of the order of the bare Kondo 
temperature Ti. We can examine this crossing in more detail by extracting from (23) the 
coefficient multiplying the logarithm of TiR - I .  Equation (23) then becomes 

J ; a ( l )  In((Ti" - I ) / D )  + b(1) = 0 (25) 

where 

a ( / )  = 1 - (J;/2) ln(l/D) t J; ln(2l/D) - J+" I n 2 ( I / D )  - 2J;J: In2(2//D) 

and h(1)  is a more complicated but uninteresting expression. Solving (25) we obtain 

(26) 

Ti'- I = Dexp[-b/(aJ;)] (27) 

which has the form of a Kondo temperature apart from the factors a and b. In the limit 
of large I this yields the same expression as in the ferromagnetic case, and, were we 
dealing with a genuine crystal-field-split Kondo problem, the coefficients a and b would be 
constants, reflecting the fact that the exponent of the Kondo temperature depends on the 
residual coupling to the lowest crystal field multiplet. 

However, in the present problem these are not constants and their dependence in I 
reflects the fact that the residual coupling of conduction electrons to the lowest split state 
is affected by the interference of the coupling to higher-lying states. As a consequence of 
this interference the factor a ( [ )  vanishes at a critical value of I given by 

IC, = Dexp[-l/(ZpJf COS(k$R))] (28) 

where f ( c o ~ ( k ~ R ) )  is given by the solution of a simple quadratic equation and varies from 
a value for cos(kpR) = -1 to a value for cos(kFR) equal to zero. The result of a ( / )  
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vanishing is that the RHS of (27) becomes zero as soon as I = Icr. For negative cos(kpR) 
and even parity this root of (23) can be traced back onto the bare Kondo temperature as 
I is reduced to zero. However, for positive cos(kpR) the root given by (2S), refemng as 
it does, to the other parity channel, does not trace back onto Ti at I = 0, explaining why 
only one parity channel has a vanishing effective Kondo temperature at I = Icr. 

4. Conclusions 

The conclusion of this paper therefore is that for the two-impurity problem, with an 
antiferromagnetic interaction between the impurities, starting from zero RKKY and increasing 
the interaction the Kondo temperature of one of the electron parity channels decreases 
and ultimately vanishes when the RKKY interaction is of the order of the non-interacting 
Kondo temperature. Our calculation is restricted to particle-hole symmetry, i.e. we have 
not included potential scattering. 

The consequences for the ground state are as follows: since the numerical studies find 
a phase shift of x/2 in both of the parity channels [ l l ,  141 we may conclude that the parity- 
mixing part of the Hamiltonian will vanish at the unstable fixed point. The vanishing of one 
of the parity resonance widths found in this paper might then be reflected in a divergence 
of the low-temperature Fermi liquid parameters which are inversely proportional to the 
smallest energy scale involved. We should note, however, that our calculation retains only 
leading-order logarithms and that the higher-order next-leading logarithmic processes will 
affect some of the conclusions. 

A number of open questions remain that require extensions of this work. Firstiy, as 
regards potential scattering, it is straightforward to show that this leads to an extra term in the 
Hamiltonian that is different in the two parity channels. At leading logarithmic order it does 
not contribute, just as in the Kondo problem. However, this term does not commute with 
the parity-mixing term, and therefore will lead to effects at higher than leading logarithmic 
order. 

Likewise the effects of renormalization of the RKKY interaction may be considered. 
We utilize the analogy with the crystal-field-split Kondo problem-since in the present 
representation the RKKY term is diagonal, in order to renormalize the RKKY interaction we 
have to examine self-energy corrections to the impurity Green functions that arise from the 
spin exchange terms in (I) .  For exactly the same reasons as in the ordinary Kondo problem, 
these involve one impurity propagator and two electron lines, and hence contribute next- 
leading logarithmic corrections to the RKKY interaction [ 161. We are therefore justified in 
neglecting them in the present treatment. 

The relevance of model (1) to real systems still remains an open question-namely the 
mention of only s-wave scattering, and the replacement of k by the Fermi wavevector in 
the k-integrations. Nevertheless the calculations presented here give the first systematic 
high-energy treatment of (l) ,  without being restricted to special coupling schemes [5,6]. 
While the retention of next-leading logarithmic terms is desirable, and probably essential 
near the scaling regime, the work describe here recovers the RKKY-induced destruction of 
the Kondo resonance-apparently a basic feature of the two-impurity Kondo problem. 
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